The asymptotic behavior of the Hurwitz binomial distribution
نویسنده
چکیده
Hurwitz's extension of Abel's binomial theorem de nes a probability distribution on the set of integers from 0 to n. This is the distribution of the number of non-root vertices of a fringe subtree of a suitably de ned random tree with n + 2 vertices. The asymptotic behaviour of this distribution is described in a limiting regime where the distribution of the delabeled fringe subtree approaches that of a Galton-Watson tree with a mixed Poisson o spring distribution.
منابع مشابه
Characteristics of the Temporal Behavior of Entanglement between Photonic Binomial Distributions and a Two-Level Atom in a Damping Cavity
In the present study, temporal behavior of entanglement between photonic binomial distributions and a two-level atom in a leaky cavity, in equilibrium with the environment at a temperature T, is studied. In this regard, the master equation is solved in the secular approximation for the density matrix, when the initial photonic distribution is binomial, while the atomic states obey the Boltzmann...
متن کاملRandom mappings, forests, and subsets associated with Abel-Cayley-Hurwitz multinomial expansions
Various random combinatorial objects, such as mappings, trees, forests, and subsets of a finite set, are constructed with probability distributions related to the binomial and multinomial expansions due to Abel, Cayley and Hurwitz. Relations between these combinatorial objects, such as Joyal’s bijection between mappings and marked rooted trees, have interesting probabilistic interpretations, an...
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملAbel-Cayley-Hurwitz multinomial expansions associated with random mappings, forests, and subsets
Extensions of binomial and multinomial formulae due to Abel, Cayley and Hurwitz are related to the probability distributions of various random subsets, trees, forests, and mappings. For instance, an extension of Hurwitz's binomial formula is associated with the probability distribution of the random set of vertices of a fringe subtree in a random forest whose distribution is de ned by terms of ...
متن کاملAn Alternative to the Beta-Binomial Distribution with Application in Developmental Toxicology
The beta-binomial distribution is resulted when the probability of success per trial in the binomial distribution varies in successive trials and the mixing distribution is from the beta family. For experiments with binary outcomes, often it may happen that observations exhibit some extra binomial variation and occur in clusters. In such experiments the beta-binomial distribution can generally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998